IMMUNOASSAY

A brief guide through its history, principles, practice and future trends

Helena Fingerová
Palacký University Medical School, Olomouc, Czech Republic
Highly specific *in vitro* tests that use antigen-antibody reaction to detect extremely low concentrations of a broad range of biologically important substances in blood and other body fluids.

Antigen-antibody reaction - known since the end of the 19th ct, precipitation in gel, agglutination or turbidimetry assays gradually developed until their potential has fully been appreciated since 1960 when higher sensitivity was achieved by labeling one of the components.
WHY?

Because the principle made possible to develop

- simple
- precise
- sensitive (nano- and picomolar range)
- high throughput measurement

of more substances than any other analytical technique
All immunoassay require the same key reagents

- One or more **antibodies** raised against epitopes believed to be specific to the analyte in question
- A label (tracer) producing a measurable signal
- Calibrators in a fluid (matrix) similar to the patient’s sample
Antibody (antiserum)

The antibody = immunoglobulin produced by the body in response to an „invading“ (foreign) substance as a part of immune response

Good antibodies possess high specificity and affinity for a specific antigen

The antibody used in immunoassay is usually of the IgG class

Antibody
 - polyclonal
 - monoclonal
 - engineered
IgG structure
Natural Antigen

- Substance that **naturally elicit** immune response
- Usually a larger molecule (over 10 kD) with several **epitopes** (antigenic determinants)
Conjugated haptens

- Smaller molecules (called **haptens**) are either weakly or not at all immunogenic.

- To produce the antibody it is necessary to couple them to an **immunogenic carrier** (e.g. BSA, thyreoglobulin..)
 - The optimal molar ratio (excess may range from 10 :1 to 80 :1) is important for production of good antisera.
Polyclonal antibodies

- raised in animals (rabbits, sheep, goat...) by repeated immunization

- a mixture of antibodies which may bind to different epitopes of the immunogen with different avidities
Double antibody

- Raised in **another species** to the primary antibody, e.g. sheep (goat, donkey...) anti rabbit (mouse, ...) IgG
 - added in much higher concentrations than primary antibody + normal rabbit (mouse,...) gamma globulin
Production of monoclonal antibodies

- Injecting an antigen into a host animal (typically a mouse)
- Isolating antibody-producing cells (B lymphocytes)
- Fusing immune cells to mouse myeloma cells
- Hybridomas are grown in culture and produce antibodies
- Selecting hybridomas that produce desired antibodies
Monoclonal antibodies

derived from a **single cell line**, monoclonals are specific for a **single epitope** on a multivalent antigen

hybridoma cell lines can produce the same antibody consistently and indefinitely, monoclonal antibodies **facilitated**:

- manufacturing of immunodiagnostics
- further development and automation of immunoassays
How does it work?
How does it work?
DISCOVERY OF RIA

In 1960 the first RIA for **insulin** (Berson & Yalow) used 131I-insulin as a tracer, and gel filtration to separate the bound and free fraction

- Paper was originally rejected by Science and J Clin Invest, but later accepted.
- In 1977 R. Yalow, R. Guillemin and A.V. Schally shared **Nobel prize** „for the development of RIAs for peptide hormones“

Principle: **competition** of unlabeled analyte in sample with fixed amount of radio-labeled analyte for **limited binding** sites on a specific Ab

Probably **the most important advance** in biological measurement in the second half of the 20th century
Competitive immunoassay

The less Ag in the sample, the more labeled Ag can be bound by Ab

a) Isotope label (RIA)
b) Enzyme label (EIA)

Calibration curve

Precision profile
Competitive assay for antibody testing

Fig. 1.42 Competitive assay for antibody testing.
Noncompetitive immunoassay
a new assay format in 1968

Analyte in the sample is bound to excess of "capture antibody" immobilized on solid phase (testtubes, microplates, etc.)

So that there always remain unoccupied binding sites

Only the occupied binding sites can be detected by "labeled antibody"

The amount of Ag in the sample is directly related to the "signal", e.g. the amount of bound labeled Ab
Noncompetitive immunoassay
(also known as sandwich, immunometric, excess reagent assays)

Competitive format
Why noncompetitive immunoassays are better than competitive assays?

- higher sensitivity and specificity
- universal labeling procedure (IgGs)
- generally longer shelf-life of labeled antibodies
- extended working range
Limitations of noncompetitive immunoassays

- not applicable to small molecules
- more expensive (higher consumption of antibodies, isolation of pure immunoglobulin necessary)
- „hook effect“ (high dose hook effect) in some assays

HAMA interference
Categories (formats) of immunoassay

- **Competitive immunoassays**
 (limited reagent assays)

- **Noncompetitive or immunometric assays**
 (excess reagent assay, sandwich assay)
Heterogeneous Assays

- Always require **separation** of the label bound in the immune complex and the free label
 - Double antibody + PEG
 - **Solid phase systems**
 - Coated tubes, microplates, beads, etc
 - Magnetic particles
Solid phase RIA kit (DHEA-S)

procedure
standard curve
expected values
in age and sex groups
Labels, tracers

Radioactive isotopes

- 3H used in competitive binding assays before the era of immunoassays
- 131I used in the first RIAs ($t_{1/2}$ 8 days)
- 125I with a longer half-life (60 days) soon replaced 131I isotope for use in RIAs
RADIOACTIVE LABELS (125I, 3H)

- High sensitivity of detection
- No interferences
- Small molecular size
- Simple labeling
- Low cost

- Enviromental risk (waste disposal)
- Dedicated instrumentation
- Separation step necessary
- Short shelf-life
- Difficult to automate
ALTERNATIVE LABELS

- **Enzymes** (alkaline phosphatase, horse raddish peroxidase and others)
- **Fluorescent substances** (fluorescein, lanthanide chelates)
- **Luminiscent substances** (substituted isoluminol, acridinium esters)
- **Particles** (latex particles, colloidal gold, Eu chelate nanoparticles)
Detection of enzyme labels

Low sensitivity: *Absorbance* measurement

- chromogenic substrates

High sensitivity: *Light emission* measurement

- chemiluminiscent substrates (peroxidase + luminol + enhancer) or alkaline phosphatase + adamantyl-1,2-dioxetane phenyl phosphate
- nonfluorescent substrates that are converted to fluorescent products (4-methylumbelliferyl phosphate)
ELISA

Enzyme Labeled ImmunoSorbent Assay

probably the most popular format

microplate

individual strips or wells in a frame
ELISA readers
PRINCIPLE OF ENHANCED LUMINESCENCE ASSAYS

\[
\begin{align*}
2\text{H}_2\text{O}_2 & \quad 2\text{H}_2\text{O} \\
& \quad \text{PEROXIDASE} \\
& \quad \text{ENHANCER} \\
& \quad \text{LUMINOL} \\
& \quad \text{AMINOPHTHALIC ACID} \\
\end{align*}
\]
Fluorogenic ELISA

Test specific module
FLUORESCENT LABELS

- **Fluorescein** and **fluorescein isothiocyanate (FITC)** – used for labeling antibodies in **histochemistry**

- **Background fluorescence** is a problem in biological specimens

- **Solution:** **time-resolved fluoroimmunoassays**
 - using long-lived fluorescence of lanthanide chelates (lifetime in **microseconds**) – label signal is measured after background fluorescence has decayed (lifetime in **nanoseconds**)
DELFIA®
Dissociation Enhanced Lanthanide FluoroImmunoAssay
LUMINISCENCE HISTORY

- 1667: Bioluminiscence was recognized
- 1887: First luminiscent substances known
- 1947: First application of firefly luciferase
- 1967: First immunoassay utilizing luminol
- 1982: Acridinium ester used for the first time as a label in a manual assay

MAGICLITE by Ciba Corning
In 1990, Ciba Corning launched the world’s first fully automated immunoassay system with Random Access, **ACS:180**
ADVIA CENTAUR
output 240 tests/hour
MODERN PARTICLE LABELS

Immunochromatographic tests, membrane tests, lateral flow or one step tests
(in dipstick or device format)
How does it work?

Ab coated particle (coloured latex, colloidal gold) binds Ag and is captured by immobilised Ab

Excess of labeled Ab binds to the second Ab (anti- mouse Ab)
Some alternative labels made it possible to develop **Homogeneous immunoassays**

Heterogeneous assays (require separation of bound Ab-Ag complex)

Homogeneous assays (do not require this separation, as signal is changed when the label is bound in the Ab-Ag complex)
Moreless outdated

HOMOGENEOUS ENZYME IMMUNOASSAYS

EMIT (Enzyme Modified Immunoassay Technology), the active site of the enzyme label is blocked when bound

FPIA (Fluorescence Polarization ImmunoAssay) rotation of fluorescent label is slower when bound

Competitive assays for small molecules in relatively high concentration – TDM

The only isotopic homogenous immunoassay:

SPA (Scintillation Proximity Assay), 3H labelled small hapten gets into the proximity of a scintilator encapsulated in the solid phase with immobilized antibody
Modern
HOMOGENEOUS ENZYME IMMUNOASSAY

automate Cryptor
MESSAGE: IMMUNOASSAYS

- are **unique** in using antibodies as analytical reagents
- are **indirect** analytical tests
 - the intensity of a signal in a sample is compared with the signal generated by a simultaneously measured calibrator
- **calibrators** should be in a proper matrix to mimic the sample
 - **traceability** of calibrator to reference preparation should be documented
 - International Reference Preparations
- **reference methods** do not exist in many cases
1st generation immunoassays

- competitive immunoassay
 - RIA, EIA, FIA, LIA, often in-house, manual double antibody and solid phase assays, commercial kits)

2nd generation immunoassays

- noncompetitive immunometric assays
 - (IRMA, ELISA, lateral flow assays, automated assays, random access automates, consolidation with clinical chemistry)

3rd generation immunoassays

- microspot analysis, biochip arrays, multiple parameter testing
3rd generation immunoassays

- multiple parameter testing
- nanotechnologies
Factors impacting analytical performance

- **Antibodies**
 - specificity, avidity, type

- **Labels**
 - sensitivity of detection, size, stability, interferences, background noise

- **Format** (competitive or noncompetitive)

- **Separation system** (in heterogeneous formats)

- **Automation**
 - eliminating human error
MAIN INTERFERENCES IN IMMUNOASSAYS

- **Competitive assays**
 - false positive results due to cross-reacting molecules (typical example: E₂ or testosterone direct assays)
 - **remedy**: improving sensitivity of primary antibody

- **Noncompetitive assays**
 - HAMA, auto- and heterophilic antibodies, rheumatoid factors - both false positive and false negative results (typical examples: hCG, myoglobin)
 - **remedy**: heterophil blocking reagent
Many analytes are heterogenic

Complexed (PSA), dimers (prolactin), fragments (hCG), different degree of glycosylation, etc…

It may result in discrepant findings between assays from different manufacturers

Sometimes ability to measure different molecular forms can increase diagnostic value of the test (PSA/freePSA, hCG subunits or hyperglycosylated hCG)
Parameters of Assay Quality

Analytical:
- **Accuracy:** ability to measure the correct concentration (comparison with reference method?)
- **Precision** *(reproducibility):* acceptable coefficient of variance
- **Detection limit** *(sensitivity):* lowest concentration different from zero

Diagnostic:
- **Sensitivity:** % of true positive results
 - If high, *then a negative result practically exclude the diagnosis* *(SnNout)*
- **Specificity:** % of true negative results
 - If high, *then a positive result practically include the diagnosis* *(SpPin)*
Immunoassays in the past
And today

Communication between clinicians and laboratorians is crucial for the benefit of patients!